Die vollständige Induktion ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird, die größer oder gleich einem bestimmten Startwert sind. Da es sich um unendlich viele Zahlen handelt, kann solch ein Beweis nicht für alle Einzelfälle durchgeführt werden. Er wird daher in zwei Etappen durchgeführt: als Induktionsanfang für eine kleinste Zahl, für die man die Aussage zeigen will (meist 1 oder 0), und als Induktionsschritt, der aus der Aussage für eine variable Zahl die entsprechende Aussage für die nächste Zahl logisch ableitet. Dieses Beweisverfahren ist von grundlegender Bedeutung für die Arithmetik und Mengenlehre und damit für alle Gebiete der Mathematik. Die vollständige Induktion erfasst durch den variablen Induktionsschritt beliebig viele Schritte, die man von 1 aus konkret durchführen kann. Das verdeutlicht die Grafik links. Diese Methode ist mit dem Dominoeffekt vergleichbar: Wenn der erste Dominostein fällt und durch jeden fallenden Dominostein der nächste umgestoßen wird, so wird schließlich jeder Dominostein der unendlich lang gedachten Kette irgendwann umfallen. – Zum Artikel …
from Die Artikel des Tages der Wikipedia http://ift.tt/2ynz0n9
0 comments:
Post a Comment